8 research outputs found

    INFLUENCE OF LIGNIN EXTRACT ON THE ACTIVITY OF ENZYMES, RELATED TO CARBOHYDRATE AND PEPTIDE DIGESTION

    Get PDF
    In cooperation with the Latvian Institute of Wood Chemistry, the following research work shows quantitative experiments in investigation of affect of different concentrations of Lignin on the activity of enzymes Pepsin and ? - Amylase. All experiments are made “in vitro” and corresponding environments were simulated. The long – term aim of this research project is, to give evidence about the different effects of lignin on human enzymes to establish a cost – efficiently, natural drug. This research work is related to the European COST program, action CM0804: Chemical Biology with Natural Products: "The main objective of the Action is to advance the use of natural products as tools for chemical biology. Applying modern techniques and advancing them, natural products will prove to be instrumental in discovering target proteins and biological pathways that are of relevance to diseases. This in turn, should facilitate and speed up subsequent drug discovery efforts in the pharmaceutical industry."

    Oregonin from Alnus incana bark affects DNA methyltransferases expression and mitochondrial DNA copies in mouse embryonic fibroblasts

    Get PDF
    Oregonin is an open-chain diarylheptanoid isolated from Alnus incana bark that possesses remarkable antioxidant and anti-inflammatory properties, inhibits adipogenesis, and can be used in the prevention of obesity and related metabolic disorders. Here, we aimed to investigate the effects of oregonin on the epigenetic regulation in cells as well as its ability to modulate DNA methylating enzymes expression and mitochondrial DNA (mtDNA) copies. Our results show that oregonin altered the expression of DNA methyltransferases and mtDNA copy numbers in dependency on concentration and specificity of cells genotype. A close correlation between mtDNA copy numbers and mRNA expression of the mtDnmt1 and Dnmt3b was established. Moreover, molecular modeling suggested that oregonin fits the catalytic site of DNMT1 and partially overlaps with binding of the cofactor. These findings further extend the knowledge on oregonin, and elucidate for the first time its potential to affect the key players of the DNA methylation process, namely DNMTs transcripts and mtDNA

    A Comparative Assessment of Sea Buckthorn (Hippophae rhamnoides L.) Pruning Waste as a Potential Source of Serotonin

    Get PDF
    Sea buckthorn (Hippophae rhamnoides L.) twigs, remaining after harvesting and pruning, are an underutilized and little-explored biomass resource. This study investigated the content of serotonin in 10 sea buckthorn cultivars (‘Maria Bruvele’, ‘Botanicheskaya Lubitelskaya’, ‘Tatiana’, ‘Otto’, ‘Leikora’, ‘Duet’, ‘Clara’, ‘Lord’, ‘Eva’, ‘Tarmo’) for the first time, and for further adjustment of the extraction conditions, cultivar ‘Maria Bruvele’ was extracted by water and water/ethanol solution with 20-25, 50, 70, and 96% ethanol at different temperatures. The results showed that 50% water/ethanol solutions are the most suitable for extraction, which makes it possible to increase the yield of serotonin. The 2-year-old twigs and bark from ‘Maria Bruvele’ collected in autumn contained higher serotonin content compared to spring-collected biomass. Serotonin sequential purification allowed the serotonin content in the fraction to increase to 26%/DM. The serotonin-rich fraction showed antimicrobial activity against gram-positive and gram-negative bacteria. In tests with salivary amylase, a serotonin-rich fraction at the amount of 0.1-0.4 mg/mL of saliva, under normal physiological conditions, tended to increase amylase activity, resulting in acceleration of starch degradation to glucose. Thus, the results support further study of the serotonin fraction for the treatment of people having underweight, malnutrition, and malabsorption conditions

    Oregonin reduces lipid accumulation and proinflammatory responses in primary human macrophages

    Get PDF
    Funding Information: This work was supported by the Swedish Research Council ( 521-2013-3588 ), the Swedish Heart-Lung Foundation ( 20130231 ), and Laboratory Medicine, Sahlgrenska University Hospital , Gothenburg Sweden. Publisher Copyright: © 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.Inflammation in the vascular wall is important for the development of atherosclerosis. We have previously shown that inflammatory macrophages are more abundant in human atherosclerotic lesions than in healthy arteries. Activated macrophages produce reactive oxygen species (ROS) that promote local inflammation in atherosclerotic lesions. Here, we investigated the role of oregonin, a diarylheptanoid, on proinflammatory responses in primary human macrophages and found that oregonin decreased cellular lipid accumulation and proinflammatory cytokine secretion. We also found that oregonin decreased ROS production in macrophages. Additionally, we observed that treatment of lipopolysaccharide-exposed macrophages with oregonin significantly induced the expression of antioxidant-related genes, including Heme oxygenase-1 and NADPH dehydrogenase quinone 1. In summary, we have shown that oregonin reduces lipid accumulation, inflammation and ROS production in primary human macrophages, indicating that oregonin has anti-inflammatory bioactivities.publishersversionPeer reviewe

    Lignocellulosic Waste Compounds for Pancreatic Lipase Inhibition: Preliminary Extraction by Freon, Obtaining of Proanthocyanidins and Testing on Lipase Activity

    No full text
    The twigs of sea buckthorn, blackcurrant, gooseberries, quince, and grapes were evaluated as a promising source of biologically active compounds—proanthocyanidins (PACs). Sea buckthorn twigs had the highest content of PACs (9.2% on dry biomass). Preliminary pretreatment of biomass with freon R134a did not allow an increase in PACs content in the composition of hydrophilic extract but confirmed the value of freon extract as an antibacterial agent against P. aeruginosa and B. cereus. The content of PACs was used as an indicator for assessment of the influence of hydrophilic extracts on pancreatic lipase activity. Under normal physiological conditions, in the presence of bile, the extract, which contained 42.4% of PACs was more effective compared to the extract which contained 17.5% of PACs. At all concentrations (0.2–40 mg of sample/g of pancreatic lipase), it inhibited lipase activity by 33%. Purified PACs were the most effective in inhibiting lipase activity (by 36%). However, in pathological physiological conditions (without bile), the opposite effect on lipase activity was observed. Thus, PACs and extracts can be used as inhibitors of pancreatic lipase only under normal physiological conditions
    corecore